

Multistage Series offers the advantages of a conventional motor pump along with the compact and versatile In-Line design, giving an ideal solution to restricted space applications.

MASTERFLOW

- Water supply and pressure boosting: Pressure boosting in buildings, hotels, residential complexes, pressure booster stations, supply of water networks, pressure boosting for industrial water supply
- Light industry: Washing and cleaning systems, car washing facilities, fire fighting systems, process water systems, machine tools (cooling lubricants)
- Heating, ventilation and air-conditioning: Boilers, induction heating, heat exchangers, refrigerators, cooling towers and systems, temperature control systems
- Irrigation and agriculture: Greenhouses, sprinkler irrigation, field irrigation (flooding)
- Water treatment: Water softeners and demineralization, reverse osmosis systems, distillation systems, filtration, ultra-filtration systems

PUMP

- Water supply and pressure boosting: Pressure boosting in buildings, hotels, residential complexes, pressure booster stations, supply of water networks, pressure boosting for industrial water supply
- Light industry: Washing and cleaning systems, car washing facilities, fire fighting systems, process water systems, machine tools (cooling lubricants)

- Heating, ventilation and air-conditioning: Boilers, induction heating, heat exchangers, refrigerators, cooling towers and systems, temperature control systems
- Irrigation and agriculture: Greenhouses, sprinkler irrigation, field irrigation (flooding)
- Water treatment: Water softeners and demineralization, reverse osmosis systems, distillation systems, filtration, ultra-filtration systems

ELECTRICAL MOTOR

- Squirrel cage in short circuit, aluminum casing up to 22 kW, totally enclosed, fan-cooled, 2-pole standard motor
- Standard supply S{CO motors
- Enclosure class: IP55
- Insulation class: F
- Standard voltages: P2: 0.37 7.5kW : 3 x 220 240/380 415V
 - P2: From 11kW : 3 x 380 415V
- The motors have efficiency values that fall within the range normally referred to as EFF.1
- Ambient temperature: Max. + 50 °C

PERFORMANCE SCOPE

	MVM, MVMI, MVMN					
KANGE	1	3	5	10	15	20
50Hz						
Nominal flow (m3/h)	1	3	5	10	15	20
Flow range (m3/h)	0.7-2.4	1.2-4.5	2.5-8.5	5-13	8.5-23.5	10.5-29
Max pressure (bar)	21.5	23	24	21.5	23	24.3
Fluid temperature (°C)	-15 °C to +120 °C					
Motor power (kW)	0.37-2.2	0.37-3	0.37-5.5	0.37-7.5	1.1-15	1.1-18.5
Version						
Cast iron and stainless steel EN 1.4301/AISI 304	·		•	•	•	•
MVMC: Stainless steel EN 1.4301/AISI 304						
MVMN: Stainless steel EN 1.4401/AISI 316	•	•		•		•
Motor						
Main connection 1~ (V/Hz) (Permissible voltage tolerance ± 10%)	220-240 V 50 Hz					
Main connection 3 [~] (V/Hz) (Permissible voltage tolerance ± 10%)	0.37-7.5 kW 220-240/380-415 V 50 Hz From 11 kW 380-415 V 50 Hz					
Insulation class	F					
Protection class	IP 55					
Ambient temperature			50	°C		
MVM Pipe Connection						
Flange	DN 25/	DN 25/	DN 25/		DN 50	DN 50
Thange	DN 32	DN 32	DN 32		DIV 00	DIV 00
MVMC, MVMN Pipe Connection						
Flange	DN 25/	DN 25/	DN 25/			
Fidilge	DN 32	DN 32	DN 32	DIN 40	DIN 50	DN 50
Vietaulie connections	R 1 ¼	R 1 ¼	R 1 ¼	R 2	R 2	R 2
victaulic-connections	DN 32	DN 32	DN 32	DN 50	DN 50	DN 50
SiC/SiC	Standard					
Seals						
EPDM	Standard					
Viton	Standard					

MOTOR

MOTOR TYPE				NOMINAL CURRENT IN [A]				
HP	KW	POLE	FLANGE	FRAME	3~220V	3~240V	3~380V	3~415V
0.5	0.37	2	B14	71	1.7	2	1.1	1.3
0.75	0.55	2	B14	71	2.5	2.8	1.5	1.7
1.0	0.75	2	B14	80	3.5	3.9	2.1	2.3
1.5	1,1	2	B14	90S	4.4	4.7	2.7	2.9
2.0	1.5	2	B14	90S	5.9	5.7	3.4	3.3
3.0	2.2	2	B14	90L	8.5	8	4.9	4.6
4.0	3.0	2	B14	100L	11.4	11.4	6.6	6.6
5.5	4.0	2	B14	112M	15.4	16.3	8.9	9.4
7.5	5.5	2	B5	132S	20.8	20.8	12	12
10.0	7.5	2	B5	132M	27.4	26.7	15.8	15.4
15	11	2	B5	160M			21.2	20
20.0	15.0	2	B5	160M			27.7	25.5
25	18.5	2	B5	160L			35.2	32.4
30	22	2	B5	180M			41.3	38.2
40	30	2	B5	180L			54.2	50.4
50	37	2	B5	200L			70.8	65.6
60	45	2	B5	200L			83.1	79.2

Standard cartridge type mechanical seal made of silicon carbide/EPDM or viton. Based on the type of application, alternative materials are available for the seal and the elastomers. The cartridge type mechanical seal can be replaced in minutes without special tools and without dismantling the pump.

LIST OF MATERIALS

- **Q** : silicon carbide
- U : tugsten carbide
- **B** : carbon
- **E** : EPDM
- V : viton

TYPE OF SEAL

SEVI TADE	MVM	MVMI	MVMN				
JERETTIL	1/3/5/10/15/12	1/3/5/10/15/20	1/3/5/10/15/20				
MECHANICAL SEALS							
S : Cartridge seal	•						
QQ	•						
UU	Optional	Optional	Optional				
UB	Optional	Optional	Optional				
SEALS							
Е							
V							

MVMI (N)- 1,3,5,10,15,20, 32, 45, 64

			MVM 1,3,5,10,15,20,32,45,64 Standard		MVM 1,3,5,10,1	5,20,32,45,64	MVM 1,3,5,10,15,20,32,45,64	
POS. NAME		MATERIAL			STANDARD		STANDARD	
			EN/DIN	AISI/ASTM	EN/DIN	AISI/ASTM	EN/DIN	AISI/ASTM
36	Pump head	Cast iron	EN-GJL-200	ASTM 25B	EN- GJS-450-10	ASTM 70-50-05	EN- GJS-450-10	ASTM 70-50-05
56	Pump head cover	Stainless steel	N/A	N/A	1.4301	AISI 304	1.4401	AISI 316
18	Impeller	Stainless steel	1.4301	AISI 304	1.4301	AISI 304	1.4401	AISI 316
37	Shaft	Stainless steel	1.4057	AISI 431	1.4057	AISI 431	1.4401	AISI 316
48	Outer sleeve	Stainless steel	1.4301	AISI 304	1.4301	AISI 304	1.4401	AISI 316
82	O-ring for outer sleeve	EPDM						
12	Chamber	Stainless steel	1.4301	AISI 304	1.4301	AISI 304	1.4401	AISI 316
24	Neck ring	PTFE						
59	Base	Cast iron	EN-GJL-200	ASTM 25B	N/A	N/A	N/A	N/A
59	Base	Stainless steel	N/A	N/A	1.4301	AISI 304	1.4401	AISI 316
62	Base plate	Cast iron	N/A	N/A	EN-GJL-200	ASTM 25B	EN-GJL-200	ASTM 25B
44	Coupling	Fe-Cu-C	SINT C11	MPIF FC0525	SINT C11	MPIF FC0525	SINT C11	MPIF FC0525
57	Mechanical seal	Cartridge type						

MAXIMUM OPERATING AND INLET PRESSURE

STAGES	MAXIMUM INLET PRESSURES	STAGES	MAXIMUM OPERATING PRESSURE				
MVM, MVMI, MVMN 1							
2-36	10 BAR	2-36	25 BAR				
MVM, MVMI, MVMN 3							
2-29	10 BAR	2-36	25 BAR				
31-36	15 BAR	2-36	25 BAR				
MVM, MVMI, MVMN 5							
2-16	10 BAR	2-36	25 BAR				
18-36	15 BAR	2-36	25 BAR				
MVM, MVMI, MVMN 10							
1-6	8 BAR	1-16	16 BAR				
7-22	10 BAR	17-22	25 BAR				
MVM, MVMI, MVMN 15							
1-3	8 BAR	1-10	16 BAR				
4-17	10 BAR	12-17	25 BAR				
MVM, MVMI, MVMN 20							
1-3	8 BAR	1-10	16 BAR				
4-17	10 BAR	12-17	25 BAR				

• **Rule to follow:** the inlet pressure + the pressure against a closed valve < max. operating pressure

Conditions for the performance curves:

- All the performance curves are based on the measured values of a motor 3 x 380V -415V at a constant speed of 2900 rpm.
- 2. Curve tolerance in conformity with ISO9906, appendix A.
- 3. Measurement is done with 20 °C air-free water, kinematic viscosity of 1mm 2/sec.
- 4. The operation of pump shall refer to the performance region indicated by the thickened curve to prevent overheating due to too small flow rate or overload of motor due to too large flow rate.

In case that the pressure in pump is lower than the steam pressure used to convey liquid, the cavitations will occur. To avoid cavitations, a minimum pressure at the inlet side if the pump shall be guaranteed. That maximum suction stroke can be calculated with the following formula:

 $H = Pb \times 10.2 - NPSH - Hf - Hv - Hs$

Pb = atmosphere pressure [bar] (can be set as 1 bar)

In a closed system, Pb means system pressure [bar]

NPSH = Net positive suction head [m]. It can be read out from the point of possible max. flow rate shown on NPSH curve.

Hf = Pipeline loss at the inlet [m] Hv = Steam pressure [m] Hs = Safety margin minimum 0.5m delivery head

OPERATION IN PARALLEL

- Connecting several pumps in a parallel running mode will benefit the reliability of the system compared to a single pump system.
- Applicable to different working states required by a variable flow system.
- Increasing the availability of water supply if a pump fails: only a part of the system flow is effected

If the calculated result H is positive, the pump may run under the max. suction stroke H. In case the calculated result H is negative, a delivery head of min. inlet pressure is necessary.

Check and ensure that the pump is not at cavitation state.

Two pumps or more can be connected in parallel running if necessary.

MVM, MVMI, MVMN pumps can have a wide variety of liquids, each with its own characteristic.

MVM, MVMI

- Non-corrosive liquids
- For fluid transfer, circulation and pressure boosting of cold or hot clean water.

MVMN

- Industrial liquids
- Light acids
- The fluids covered in the list are not complete. Data on the application limits of different pump materials when handling any of the listed fluids are considered to be the best choices. However, the table is intended as a general guide only, and cannot replace actual testing of the pumped fluids and pump materials under specific-working conditions.
- When choosing the pump version, sufficient attention should be given to the flow medium, such as density, solidification point, viscosity as well as ex-protection requirement. The limit of applicability of the pumps, based on pressure and temperature must also be considered.

RECOMMENDED

	FLUID CONCENTRATION	M	/MI	MVMN		
	TEMPERATURE	EPDM	VITON	EPDM	VITON	
Acetic acid anhydride	25°C			•		
Alkaline cleaner						
Aluminum sulphate	10%, 25°C				•	
Ammonia water (A. hydroxide)	20%, 40°C					
Ammonia hydrogen carbonate	10%, 40°C	•		•		
Benzoic acid	10%, 90°C				•	
Boric acid	Unsaturated solution, 60°C				•	
Butanol	60°C	•				
Calcium acetate	acetate 30%, 50°C					
Calcium hydroxide	xide Saturated solution, 50°C					
Chromic acid	1%, 20°C				•	
Condensate	90°C	•				
Copper sulphate	Unsaturated solution, 60°C				•	
Deionic (fully desalinated water)	50°C			•		
Ethanol	100%, 20°C					
Ehylene glycol/Diethylene glycol	40%, 70°C	•		•	•	
Fixer	25°C				•	
Formic acid	5%, 20°C					
Fruit juice	50°C					

Head Office New South Wales 184 Newton Road, Wetherill Park 2164 +61 (2) 9748 2022

Victoria 8-10 Parkhurst Drive Knoxfield 3180 +61 (3) 9012 9751 **Queensland** 161 Railway Parade Thorneside 4158 +61 (7) 3103 7055

masterflow.net.au/

sales@masterflow.net.au

All content is subject to change without notice.