

Air cooled reversible heat pump for outdoor installation

ELFOEnergy Magnum

WSAN-XEM 50.4-120.4 RANGE

TECHNICAL BULLETIN

SIZE	50.4	55.4	60.4	65.4	70.4	80.4	90.4	100.4	110.4	120.4
Cooling capacity [kW]	139	149	160	170	184	209	235	275	297	323
Heating capacity [kW]	155	167	182	193	210	238	274	312	339	373

Page

- 3 Features and benefits
- 4 Standard unit technical specifications
- 7 Unit configuration
- 8 Built-in options
- 10 Accessories separately supplied
- 12 General technical data
- 17 Performances
- 21 Configurations
- 27 Dimensional drawings

Features and benefits

ELFOEnergy Magnum: modular scroll technology for every application

WSAN-XEM 50.4 ÷ 120.4

- Air cooled heat pump
- EXCELLENCE high efficiency version
- · Partial recovery of the condensing heat

WSAT-XEM 50.4 ÷ 120.4

- Air cooled water chiller
- EXCELLENCE high efficiency version
- PREMIUM compact version
- Total/partial recovery of the condensing heat

WSAN-XEM MF 50.4 ÷ 120.4

- Air cooled heat/cool heat pump with simultaneous operating
- EXCELLENCE high efficiency version
- 4-pipe system
- 2-pipe system and total condensing heat recovery

WSAN-XEM HW 35.4 ÷ 60.4

- Air cooled heat pump
- EXCELLENCE high efficiency version
- Production of hot water up to 65°C
- Extended operating range

Standard unit technical specifications

Compressor

High efficiency hermetic orbiting scroll compressor complete with oil charge, motor over-temperature and over-current devices and protection against excessive gas discharge temperature with oil heater, which starts automatically, keeps the oil from being diluted by the refrigerant when the compressor stops.

Compressors, fitted on rubber antivibration mounts to prevent transmission of noise and vibration, are connected in TANDEM on a single refrigerating circuit with biphasic oil equalisation, it allows to reach high efficiency at partial load.

Uniform compression process with reduced number of moving parts which ensure very low levels of noise and vibration.

Structure

Structure and base made entirely of sturdy sheet steel, thickness of 30/10 or 40/10, with the surface treatment in Zinc–Magnesium painted , for the parts in view, with polyester powder RAL 9001 that guarantees excellent mechanical characteristics and high corrosion strength over time.

Internal exchanger

Direct expansion heat exchanger, braze-welded AISI 316 stainless steel plates, in pack without seals using copper as the brazing material, with low refrigerant charge and large exchange surface, complete with:

- external thermal insulation no-condensation, thickness 9,5 mm, in extruded elastomer foam with closed cells;
- differential pressure switch, water side;
- antifreeze heater to protect the water side exchanger, preventing the formation of frost if the water temperature falls below a set value

Maximum operating pressure exchanger: 10 bar on the water side

Esternal exchanger

Finned exchanger, made from copper pipes arranged in staggered rows and mechanically expanded for better adherence to the collar of the fins. The exchangers are planned, designed and produced directly by CLIVET. The fins are made of aluminium and special corrugated surface, set a suitable distance apart to ensure maximum heat exchange efficiency. A proper liquid supply of the expansion valve is ensured by the subcooling circuit. Each finned heat exchanger is directly cooled by the air flow of its specific fans.

Fan

Axial fans with high performance and low-noise, balanced statically and dynamically, with blades in aluminum sheet coated in PP and sickle profile terminating with "Winglets", Wall ring in sheet steel pre-galvanised, directly coupled to the three-phase electric motor with external rotor and IP54 protection and class F insulation. Fans are located in aerodynamically shaped structures, equipped with accident prevention steel guards. Supplied with variable speed control (phase-cutting).

Refrigeration circuit

Two independent refrigeration circuits made of copper, brazed and factory-assembled, complete with:

- · anti-acid dehydrator filter with solid cartridge replaceable;
- liquid flow and humidity indicator;
- liquid receiver;
- · electronic expansion valve;
- non return valve;
- 4-way reverse cycle valve;
- · high-pressure safety pressure switch;
- · safety valve for high and low pressure;
- cutoff valve on compressor supply
- cut-off valve on liquid line.
- inlet liquid separator.

Suction pipes thermally insulated with highly flexible EPDM rubber closed-cell elastomer insulation. Each cooling circuit is tested under pressure for leaks and is supplied complete with load of refrigerant gas.

Electrical panel

The capacity section includes:

- · main door lock isolator switch
- isolating transformer for auxiliary circuit power supply
- on-off "C1" and "C2" scroll compressor protection magnetothermic
- inverter scroll compressor protection fuses (size from 50.4 to 65.4)
- fan overload circuit breakers (size from 70.4 to 120.4)
- on-off "C1" and "C2" scroll compressor control contactor The control section includes:
- interface terminal with graphic display
- display of the set values, the error codes and the parameter index
- keys for ON/OFF control, cool and heat operating modes, alarm reset
- proportional-integral water temperature control
- daily, weekly programmer of temperature set-point and unit on/off
- Set point compensation in function of the outdoor air temperature
- set-point compensation with signal 0-10 V
- unit switching on management by local or remote (serial)
- · antifreeze protection water side
- · compressor overload protection and timer
- prealarm function for water antifreeze and high refrigerant gas pressure
- self-diagnosis system with immediate display of the fault code
- automatic rotation control for compressor starts
- compressor operating hour display
- remote ON/OFF control
- relay for remote cumulative fault signal
- inlet for demand limit (power input limitation according to a 0÷10V external signal)
- digital input for double set-point enabling
- potential-free contacts for compressor status
- phase monitor
- ECOSHARE function for the automatic management of a group of units
- 0÷10V signal output and potential-free contact for auxiliary heater
- enabling of DHW preparation in relation to remote consent
- numeration of electrical panel cables

Standard unit technical specifications

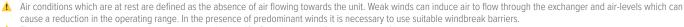
Accessories

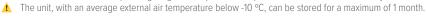
- Partial energy recovery
- · Storage tank
- Copper/aluminium condenser coil with acrylic lining
- · Condenser coil with Energy Guard DCC Aluminum
- Diffuser for high efficiency axial fan
- Device for consumption reduction of the external section ECOBREEZE fans
- Disposal for inrush current reduction
- Multi-function phase monitor
- · Serial communication module to BACnet supervisor
- Serial communication module to Modbus supervisor
- · Serial communication module to LonWorks supervisor
- Power-factor correction capacitors (cosfi > 0,9)
- · Finned coil protection grill
- High and low pressure gauges
- Electrical panel antifreeze protection for min. outdoor temperature down to -20°C
- Electrical panel antifreeze protection for min. outdoor temperature down to -25°C
- Remote control (Accessories separately supplied)
- Steel mesh strainer on the water side (Accessories separately supplied)
- User side DHW switching valve (Accessories separately supplied)
- Anti-vibration mount support (Accessories separately supplied)

Test

Unit subjected to factory-tested in specific steps and test pressure of the piping of the refrigerant circuit (with nitrogen and hydrogen), before shipping them.

Standard unit technical specifications

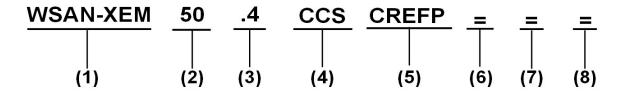

Unit equipment with low outdoor temperatures


MINIMUM OUTDOOR AIR OPERATING UNIT		ING UNIT	UNIT IN STAND-BY***	UNIT IN STORAGE	
TEMPERATURE		COOLING*	HEATING**	(fed unit)	(unit not fed)
+11°C +2°C -5°C -7°C	1 2 4 3	✓ STANDARD UNIT ✓ STANDARD UNIT			
-10°C Tra −10°C e −15°C	4		✓ STANDARD UNIT	✓ STANDARD UNIT	▼ STANDARD UNIT (6)
Tra –15°C e –20°C		NOT POSSIBLE	NOT POSSIBLE	 ✓ WATER EMPTY UNIT OR WITH AN AP- PROPRIATE GLYCOL PERCETAGE ✓ ELECTRICAL PANEL ANTIFREEZE PROTECTION (RE -20) X NOT SUITABLE: BUILT-IN PUMPS 	NOT POSSIBLE
Tra −20°C e −25°C				 ✓ WATER EMPTY UNIT OR WITH AN AP- PROPRIATE GLYCOL PERCETAGE ✓ ELECTRICAL PANEL ANTIFREEZE PROTECTION (RE -20) X NOT SUITABLE: BUILT-IN PUMP 	

Data referred to the following conditions:

internal exchanger water = 30/35 °C

- 1. Part load unit and air speed equal to 1 m/s.
- 2. Part load unit and air speed equal to 0.5 m/s.
- 3. Part load unit and outdoor air temperature at rest.
- 4. Unit at full load and outdoor air temperature at rest.
- (5) The water pumping unit must be fed and connected to the unit according to the manual.
- (6) Unit without water or containing water with an appropriate quantity of glycol.
- At the unit start-up the water temperature or water with glycol must be inside the operating range indicated in the "Operating range" graph.
- To know the water freezing temperature on varying the glycol percentage refer to the specific 'Correction factors for glycol use' table.



^{*}production of chilled water:

internal exchanger water = 12/7°C

^{**}Production of hot water:

Unit configuration

(1) Range

WSAN = Air cooled heat pump

XEM = ELFOEnergy Magnum range with multiscroll compressors and R-410A refrigerant

(2) Size

50 = Nominal compressor capacity (HP)

(3) Compressors

.4 = Compressor quantity

(4) Condenser coils

CCS - Copper / aluminium condenser coil (standard)

CCCA - Copper / aluminium condenser coil with acrylic lining

CCCA1 - Copper / aluminium condensing coils with Aluminium Energy Guard DCC treatment

(5) Fans

CREFP = Device for fan consumption reduction of the external section at variable speed (phase-cutting)

CREFB = Device for fan consumption reduction of the external section ECOBREEZE type (Only for size 70.4 ÷ 120.4)

(6) Diffuser for fans

(-) Not required (standard)

HEDIF - Diffuser for high efficiency axial fan (only for size 70.4 ÷ 120.4)

(7) Condensation heat recovery

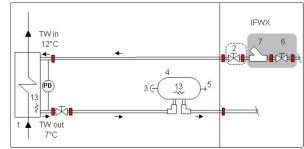
(-) Not required (standard)

D - Partial energy recovery

(8) Pumping unit

(-) Not required (standard)

VARYP = Varyflow + (2 inverter pumps)


HYG1 = Hydronic assembly with 1 on/off pump

HYG2 = Hydronic assembly with 2 on/off pumps

ACC Storage tank

Option supplied built-in the unit. Steel storage tank complete with double layer covering with closed-cell insulation, stainless steel anti-freeze immersion resistance, bleed valve, draw off cock, cast-iron shut-off butterfly valve with quick connections and activation lever with a mechanical calibration lock at the evaporator output, quick connections with insulated casing. For sizes $50.4 \div 65.4$ the storage tank capacity is 300L.

For sizes $70.4 \div 120.4$ the storage tank capacity is 500L.

- 1- Internal exchanger
- 2- Cutoff valve
- 3- Purge valve
- 4- Storage tank with antifreeze electric heater
- 5- Discharge stop valve
- 6- Cutoff valve
- 7- Steel mesh strainer on the water side
- 13- Antifreeze heater
- TW in Chilled water inlet
- TW out Chilled water outlet IFWX = Steel mesh strainer on the water
- T Temperature probe

side

PD - Differential pressure switch

CCCA Copper/aluminium condenser coil with acrylic lining

Coils with copper pipes and aluminium fins with acrylic lacquering. Can be used in settings with moderately aggressive saline concentrations and other chemical agents.

Attention!

- cooling capacity variation -2.7%
- variation in compressor power input +4.2%
- operating range reduction -2.1°C

CCCA1 Condenser coil with Energy Guard DCC Aluminum

A treatment which offers an optimal thermal exchange and guarantees and protects the finned coil exchangers from corrosion over time. Can be used in settings with very aggressive saline concentrations and other chemical agents in the air thus maintaining the performance of the coils over time.

HEDIF Diffuser for high efficiency axial fan

The AxiTop diffuser creates an ideal air distribution: it aerodynamically decelerates the flow and transforms a big part of its kinetic energy in static pressure.

Obtaining:

- down to -3 dB of silence
- reduction of 3% of the absorbed energy

Since the fans are the unit's main noise source, the benefits are evident especially during the night hours, when the load is reduced but sensitivity to noise is enhanced.

Available only for size 70.4 ÷120.4.

CREFB Device for consumption reduction of the external section ECOBREEZE fans

Axial fans with sickle profile blades terminating with "Winglets", directly coupled to the electronic controlled motor (IP54), driven by the magnetic switching of the stator. The brushless technology and the special supply increase both the life expectancy and the efficiency. As a result the electric consumption is reduced up to 50%. Fans are housed in aerodynamically shaped structures to increase efficiency and reduce noise level. The assembly is protected by accident prevention guards. Available for size 70.4 ÷120.4.

SFSTR Disposal for inrush current reduction

Electronic device that automatically and gradually starts the compressors, thereby reducing the current peak generated in startriangle start-ups and therefore reduces the mechanical stress on the motor and the electrodynamic stress on the power cables and on the mains.

For sizes $50.4 \div 65.4$ the disposal for inrush current reduction is for supply voltage 400/3/50 + N.

For sizes $70.4 \div 120.4$ the disposal for inrush current reduction is for supply voltage 400/3/50.

MF2 Multi-function phase monitor

The multifunction phase monitor controls all phases and their sequence, checks for voltage anomalies (+/–10%), and automatically restores operation of the unit as soon as the power supply returns to normal.

This control allows to:

- protect components inside the unit, as if they are powered by an anomalous voltage they may operate incorrectly or break;
- quickly identify, among the alarms of the unit's components, the real cause of the malfunction due to the sudden change in voltage.

Built-in options

CMSC8 Serial communication module to BACnet supervisor

This enables the serial connection of the supervision system, using Modbus as the communication protocol. It enables access to the complete list of operational variables, commands and alarms. Using this accessory every unit can dialogue with the main supervision systems.

The device is installed and wired built-in the unit.

The configuration and management activities for the BACnet networks are the responsibility of the client.

The total length of each serial line do not exceed 1000 meters and the line must be connected in bus typology (in/out)

CMSC9

Serial communication module to Modbus supervisor

This enables the serial connection of the supervision system, using Modbus as the communication protocol. It enables access to the complete list of operational variables, commands and alarms. Using this accessory every unit can dialogue with the main supervision systems.

The device is installed and wired built-in the unit.

The total length of each serial line do not exceed 1000 meters and the line must be connected in bus typology (in/out)

CMSC10

Serial communication module to LonWorks supervisor

This enables the serial connection of the supervision system which uses the LonWorks communication protocol. It enables access to a list of operating variables, commands and alarms which comply with the Echelon® standard. The device is installed and wired built-in the unit.

▲ LonWorks technology uses the LonTalk® protocol for communicating between the network nodes. Contact the service supplier for further information.

⚠ The configuration and management activities for the LonWorks networks are the responsibility of the client.

PFCP

Power-factor correction capacitors (cosfi > 0,9)

The component is necessary to lower the phase difference between current and voltage in the electromagnetic components of the unit (e.g. asynchronous motors). The component allows to put the cosfi power factor to values on average higher than 0.9, reducing the network reactive power. This often leads to an economic benefit which the energy provider grants to the final user.

PGFC

Finned coil protection grill

This accessory is used to protect the external coil from the accidental contact with external things or people. Ideal for installation in places where persons can pass from, such as car parks, terraces, etc.

MHP

High and low pressure gauges

Despite the unit already enabling a series of digital displays on the operating pressure of the refrigeration circuit, this option enables analogical measuring of refrigerant pressures at compressor intake and supply thus easing the checking of these parameters for the technicians who are managing the unit. The two liquid pressure gauges and related pressure sensors are attached built-in in easily accessible positions.

RE-20 / **RE-25**

Electrical panel anti-freeze protection

It includes self-regulating electric heaters with thermost which are able to protect the electrical panel against condensation and frost guaranteeing its correctly functions down to -20°C or -25°C. This accessory operates even when the unit is switched off provided that the power supply is maintained active and the unit continues to be electrically connected.

Device installed and wired built-in the unit.

This accessory operates even when the unit is switched off provided that the power supply is maintained active and the unit continues to be connected.

This accessory does not lead to substantial variations in the electrical data for the unit which has been declared in the Electrical Data section.

Accessories separately supplied

RCTX Remote control

This option allows to have full control over all the unit functions from a remote position.

It can be easily installed on the wall and has the same aspect and functions of the user interface on the unit

- All device functions can be repeated with a normal portable PC connected to the unit with an Ethernet cable and equipped with an internet navigation browser.
- ⚠ The device should be installed on the wall using suitable plugs, electrically hooked up and connected to the unit (installation and wiring are the responsibility of the Customer). Max. remote distance 350 m without auxiliary supply.
- ▲ Data and power supply serial connection cable n.1 twisted and shielded pair. Diameter of the individual conductor 0.8 mm.

BACX

BACnet serial communication module

Allows the serial connection to supervision systems by using BACnet-IP as a communication protocol. It allows the access to the entire list of operating variables, controls and alarms. With this accessory every unit can communicate with the main supervision systems.

⚠ The configuration and management activities for the BACnet networks are the responsibility of the client

The total length of each serial line do not exceed 1000 meters and the line must be connected in bus typology (in/out)

CMMBX

Serial communication module to supervisor (Modbus)

This enables the serial connection of the supervision system, using Modbus as the communication protocol. It enables access to the complete list of operational variables, commands and alarms. Using this accessory every unit can dialogue with the main supervision systems.

⚠ The total length of each serial line do not exceed 1000 meters and the line must be connected in bus typology (in/out)

CMSLWX

LonWorks serial communication module

This enables the serial connection of the supervision system which uses the LonWorks communication protocol. It enables access to a list of operating variables, commands and alarms which comply with the Echelon® standard.

The configuration and management activities for the LonWorks networks are the responsibility of the client.

▲ LonWorks technology uses the LonTalk® protocol for communicating between the network nodes. Contact the service supplier for further information.

PGFCX

Finned coil protection grill

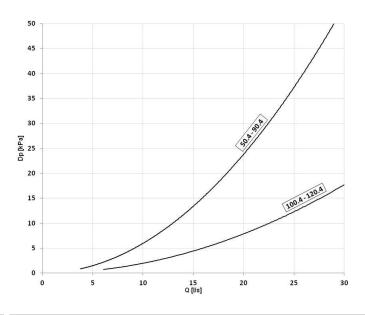
This accessory is used to protect the external coil from the accidental contact with external things or people. Ideal for installation in places where persons can pass from, such as car parks, terraces, etc.

1 This option is not suitable for application in sulphuric environments

MHPX

High and low pressure gauges

Despite the unit already enabling a series of digital displays on the operating pressure of the refrigeration circuit, this option enables analogical measuring of refrigerant pressures at compressor intake and supply thus easing the checking of these parameters for the technicians who are managing the unit. The two liquid pressure gauges and related pressure sensors are attached built-in in easily accessible positions.


Accessories separately supplied

IFWX Steel mesh strainer on the water side

The device prevents any impurity in the hydraulic circuit from soiling the exchanger. The stainless steel mesh mechanical filter must be placed on the water inlet line. It needs to be easy to remove for periodical maintenance and cleaning operations. Moreover, it consists of:

- cast-iron shut-off butterfly valve with quick coupling and throttle drive and mechanical calibration stop
- quick couplings with an insulated casing

Steel mesh strainer pressure drops

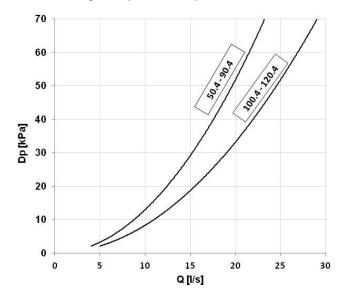
Q = Water flow rate (I/s) DP = Water side pressure drops (kPa)

AVIBX Anti-vibration mount support

The spring antivibration mounts are attached in special housing on the support frame and serve to smooth the vibrations produced by the unit thus reducing the noise transmitted to the support structure.

VACSUX User side DHW switching valve

The domestic hot water switching valve on the utility side is also supplied as a separate accessory. The DHW switching valve user side is supplied as accessory separated from the unit. The unit controller closes a digital output to control the DHW switching valve from the installation to the storage tank up to the DHW set point reaching


For sizes from 50.4 to 90.4 the DHW switching valve is 3".

For sizes from 100.4 to 120.4 the DHW switching valve is 4".

The DHW switching valve has a IP 40 protection degree.

It is therefore compulsory that client provides a protection for the external liquid valve.

DHW switching valve pressure drops

Q = Water flow rate (I/s) DP = Water side pressure drops (kPa)

General technical data

SIZE			50.4	55.4	60.4	65.4	70.4	80.4	90.4	100.4	110.4	120.4
Cooling												
Cooling capacity	1	kW	139	149	160	170	184	209	236	275	297	324
Compressor power input	1	kW	43,3	48,2	52,8	58,2	60,4	69,4	85,2	86,7	98,3	114
Total power input	2	kW	48,2	53,1	57,7	63,1	66,9	75,9	91,7	96,4	108	124
EER	1		2,89	2,81	2,78	2,70	2,76	2,76	2,57	2,85	2,75	2,61
Water flow-rate	1	I/s	6,62	7,08	7,62	8,09	8,76	9,94	11,2	13,1	14,1	15,4
User side exchanger pressure drops	1	kPa	17,1	19,4	22,3	20,8	13,7	17,4	21,8	22,1	17,0	20,0
Cooling capacity (EN14511:2018)	3	kW	139	149	160	170	184	209	235	275	297	323
Total power input (EN14511:2018)	3	kW	48,4	53,4	58,1	63,5	67,1	76,2	92,2	97,0	109	125
EER (EN14511:2018)	3		2,87	2,79	2,76	2,68	2,75	2,74	2,55	2,83	2,74	2,60
SEER	9		3,99	4,00	4,04	4,07	3,94	4,08	4,08	3,93	3,91	3,85
Heating												
Heating capacity	4	kW	154	167	182	193	209	238	273	312	339	373
Compressor power input	4	kW	42,3	46,5	50,7	54,4	57,8	66,6	77,4	85,7	93,5	106
Total power input		kW	47,2	51,4	55,6	59,2	64,3	73,0	83,9	95,3	103	115
СОР	4		3,27	3,25	3,27	3,26	3,26	3,26	3,26	3,27	3,28	3,24
Water flow-rate	4	I/s	7,47	8,07	8,79	9,33	10,1	11,5	13,2	15,1	16,4	18
User side exchanger pressure drops	4	kPa	21,5	24,9	29,4	27,4	18,0	23,0	29,9	29,0	22,5	27,1
Heating capacity (EN14511:2018)		kW	155	167	182	193	210	238	274	312	339	373
Total power input (EN14511:2018)	5	kW	47,6	51,8	56,2	59,8	64,7	73,6	84,7	96,2	104	116
COP (EN14511:2018)	5		3,25	3,23	3,24	3,23	3,24	3,24	3,23	3,25	3,26	3,21
SCOP - AVERAGE Climate - W35	9		3,70	3,66	3,72	3,72	3,64	3,64	3,76	3,25	3,70	3,80
Compressor												
Type of compressors			_				SCF	ROLL				
Refrigerant							R-4	110A				
No. of compressors		Nr	4	4	4	4	4	4	4	4	4	4
Std Capacity control steps		Nr	6	5	4	5	6	6	6	6	6	4
Oil charge (C1)		-	7,00	7,00	7,00	7,00	8,00	10,0	10,0	11,0	13,0	13,0
Oil charge (C2)			7,00	7,00	7,00	8,00	8,00	10,0	10,0	11,0	13,0	13,0
Tot. refrigerant charge (C1)		kg	20,0	26,0	24,0	28,0	29,0	34,0	43,0	46,0	48,0	52,0
Tot. refrigerant charge (C2)		kg	20,0	26,0	24,0	28,0	29,0	34,0	43,0	46,0	48,0	52,0
Refrigeration circuits		Nr	2	2	2	2	2	2	2	2	2	2
Internal exchanger												
Type of internal exchanger	6						Р	HE				
No. of internal exchangers		Nr	1	1	1	1	1	1	1	1	1	1
Water content		-	20,0	20,0	20,0	22,0	30,0	30,0	30,0	36,0	46,0	46,0
External Section Fans												
Type of fans	7						F	/X				
Number of fans		Nr	8	8	8	8	4	4	4	6	6	6
Motor type	10		AC/P	AC/P	AC/P	AC/P	AC/P	AC/P	AC/P	AC/P	AC/P	AC/P
Standard airflow		I/s	20300	20300	20000	20000	25000	24200	24200	35000	35000	35000
Installed unit power		kW	0,60	0,60	0,60	0,60	1,60	1,60	1,60	1,60	1,60	1,60
Connections												
Water fittings	_		3"	3"	3"	3"	3"	3"	3"	4"	4"	4"
Water circuit												
Max water side pressure	_	kPa	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Safety valve calibration		kPa	600	600	600	600	600	600	600	600	600	600
Min. installation water contents	8		864	841	1240	1227	1245	1233	1176	1618	2005	2505
Power supply									_			
Standard power supply			400/3/50+N	400/3/50+N	400/3/50+N	400/3/50+N	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50

The Product is compliant with the Erp (Energy Related Products) European Directive. It includes the Commission delegated Regulation (EU) No 811/2013 (rate heat output ≤70 kW at specified reference conditions) and the Commission delegated Regulation (EU) No 813/2013 (rated heat output ≤400 kW at specified reference conditions). 'Contains fluorinated greenhouse gases' (GWP 2087,5)

- Data referred to the following conditions: Internal exchanger water temperature = 12/7°C Entering external exchanger air temperature = 35°C
- The Total Power Input value does not take into account the part related to the pumps and required to overcome the pressure drops for the circulation of the solution inside the exchangers
- Data compliant to Standard EN 14511:2018 referred to the following conditions: -Internal exchanger water temperature = 12/7°C - Entering external exchanger air temperature = 35°C
- Data referred to the following conditions: Internal exchanger water temperature = 40/45°C. Entering external exchanger air temperature= 7°C D.B./6°C W.B
- Data compliant to Standard EN 14511:2018 referred to the following conditions: -Internal exchanger water temperature = 40/45°C - Entering external exchanger air

- temperature =7°C. D.B. / 6°C W.B.
- 6. PHE = plate exchanger
- 7. AX = axial fan
- The minimum system water content calculated value does not consider the internal exchanger water content. With outdoor air low temperature applications or low medium requested loads, the minimum installation water volume is obtained doubling the indicated value
- Data calculated according to the EN 14825:2018 Regulation
- AC/P = Three-phase asynchronous motor with external rotor complete with automatic phase cut speed regulation

General technical data

Electrical data

Supply voltage 400/3/50+N

SIZE		50.4	55.4	60.4	65.4
F.L.A Full load current at max admis	sible conditions				
F.L.A Compressor 1	А	19,7	19,7	30,5	30,5
F.L.A Compressor 2	А	30,5	30,5	30,5	30,5
F.L.A Compressor 3	А	19,7	30,5	30,5	30,5
F.L.A Compressor 4	А	30,5	30,5	30,5	36,5
F.L.A Single External Fan	A	2,60	2,60	2,60	2,60
F.L.A Totale	A	111	122	133	151
L.R.A Locked rotor amperes					
L.R.A Compressor 1	А	118	118	174	174
L.R.A Compressor 2	A	174	174	174	174
L.R.A Compressor 3	A	118	174	174	174
L.R.A Compressor 4	A	174	174	174	225
L.R.A Single External Fan	A	14,0	14,0	14,0	14,0
F.L.I Full load power input at max ac	dmissible conditions				
F.L.I Compressor 1	kW	11,9	11,9	17,0	17,0
F.L.I Compressor 2	kW	17,0	17,0	17,0	17,0
F.L.I Compressor 3	kW	11,9	17,0	17,0	17,0
F.L.I Compressor 4	kW	17,0	17,0	17,0	22,6
F.L.I Singolo Ventilatore Esterno	kW	0,60	0,60	0,60	0,60
F.L.I Total	kW	60,4	65,6	70,7	76,3
M.I.C. Maximum inrush current					-
M.I.C Value	Α	254	265	276	327
M.I.C. with soft start accessory	A	192	203	214	230

Electrical data refer to standard units; according to the installed accessories, the data can suffer some variations.

Power supply: 400/3/50 Hz. Voltage variation: max. +/-10% For non standard voltage please contact Clivet technical office

Voltage unbalance between phases: max 2 %

The units are compliant with the provisions of European standards CEI EN 60204 and CEI EN 60335.

Supply voltage 400/3/50

SIZE		70.4	80.4	90.4	100.4	110.4	120.4
F.L.A Full load current at max admi	ssible condition	ıs					
F.L.A Compressor 1	А	30,5	30,5	30,5	36,5	44,9	59,3
F.L.A Compressor 2	A	36,5	44,9	59,3	59,3	59,3	59,3
F.L.A Compressor 3	A	30,5	30,5	30,5	36,5	44,9	59,3
F.L.A Compressor 4	A	36,5	44,9	59,3	59,3	59,3	59,3
F.L.A Single External Fan	A	4,10	4,10	4,10	4,10	4,10	4,10
F.L.A Totale	A	151	168	196	217	234	262
L.R.A Locked rotor amperes							
L.R.A Compressor 1	А	174	174	174	225	272	310
L.R.A Compressor 2	A	225	272	310	310	310	310
L.R.A Compressor 3	A	174	174	174	225	272	310
L.R.A Compressor 4	A	225	272	310	310	310	310
L.R.A Single External Fan	A	14,0	14,0	14,0	14,0	14,0	14,0
F.L.I Full load power input at max a	dmissible cond	itions					
F.L.I Compressor 1	kW	17,0	17,0	17,0	22,6	27,6	36,1
F.L.I Compressor 2	kW	22,6	27,6	36,1	36,1	36,1	36,1
F.L.I Compressor 3	kW	17,0	17,0	17,0	22,6	27,6	36,1
F.L.I Compressor 4	kW	22,6	27,6	36,1	36,1	36,1	36,1
F.L.I Singolo Ventilatore Esterno	kW	1,90	1,90	1,90	1,90	1,90	1,90
F.L.I Total	kW	86,9	96,9	114	129	139	156
M.I.C. Maximum inrush current							
M.I.C Value	А	339	394	447	467	484	512
M.I.C. with soft start accessory	А	242	262	309	329	346	375

Electrical data refer to standard units; according to the installed accessories, the data can suffer some variations.

Power supply: 400/3/50 Hz. Voltage variation: max. +/-10%

Voltage unbalance between phases: max 2 %

For non standard voltage please contact Clivet technical office

The units are compliant with the provisions of European standards CEI EN 60204 and CEI EN 60335.

Sound levels

Standard unit

	Sound power level (dB)												
Size				Octave	band (Hz)				power level	pressure level			
	63	125	250	500	1000	2000	4000	8000	dB(A)	dB(A)			
50.4	88	95	84	84	83	81	68	61	88	69			
55.4	88	95	84	84	83	81	68	61	88	69			
60.4	88	95	84	84	83	81	68	61	88	69			
65.4	88	95	84	84	83	81	68	61	88	69			
70.4	91	88	88	85	83	82	67	60	88	68			
80.4	91	88	88	85	83	82	67	60	88	68			
90.4	91	88	88	85	83	82	67	60	88	68			
100.4	93	90	90	88	88	85	71	62	92	72			
110.4	93	90	90	88	88	85	71	62	92	72			
120.4	93	90	90	88	88	85	71	62	92	72			

Sound levels refer to units with full load under nominal test conditions.

The sound pressure level refers to a distance of 1 meter from the outer surface of the unit operating in open field.

Measures are according to UNI EN ISO 9614-2 regulations, with respect to the EUROVENT 8/1 certification, which provides for a tolerance of 3 dB(A) on the sound power level, which is the only acoustic data to be considered binding.

Data referred to the following conditions:

- internal exchanger water temperature = 12/7 $^{\circ}$ C ambient temperature = 35 $^{\circ}$ C

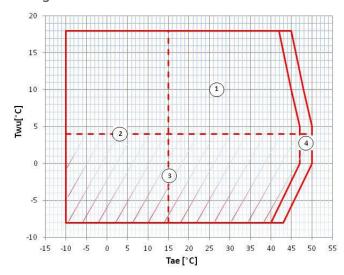
Unit with HEDIF - "Diffuser for high efficiency axial fan" option

Size	Sound power level	Sound pressure level
70.4	86	66
80.4	86	66
90.4	86	66
100.4	90	70
110.4	90	70
120.4	90	70

Sound levels refer to units with full load under nominal test conditions.

The sound pressure level refers to a distance of 1 meter from the outer surface of the unit operating in open field.

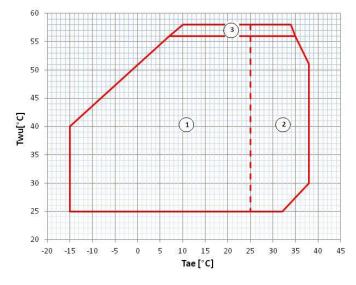
Measures are according to UNI EN ISO 9614-2 regulations, with respect to the EUROVENT 8/1 certification, which provides for a tolerance of 3 dB(A) on the sound power level, which is the only acoustic data to be considered binding.


Data referred to the following conditions:

- internal exchanger water temperature = 12/7 $^{\circ}$ C
- ambient temperature = 35 °C

General technical data

Operating Range


Cooling

 $\label{eq:continuous} \begin{tabular}{ll} Twu \ [^\circ C] = Internal \ exchanger \ outlet \ water \ temperature \\ Tae \ [^\circ C] = External \ exchanger \ inlet \ air \ temperature \\ \end{tabular}$

- Standard unit operating range at full load Standard unit operating range with air flow automatic modulation Operating range where the use of ethylene glycol is mandatory in relation to the temperature of the water at the outlet of the user side exchanger
- Unit operating range with automatic staging of the compressor capacity

Heating

 $\label{eq:continuous} \begin{tabular}{ll} Twu \ [^\circ C] = Internal \ exchanger \ outlet \ water \ temperature \\ Tae \ [^\circ C] = External \ exchanger \ inlet \ air \ temperature \\ \end{tabular}$

- Standard unit operating range at full load
- Standard unit operating range with air flow automatic modulation
- Unit operating range with automatic staging of the compressor capacity

Correction factors for glycol use

% ethylene glycol by weight		5%	10%	15%	20%	25%	30%	35%	40%
Freezing temperature	°C	-2,0	-3,9	-6,5	-8,9	-11,8	-15,6	-19,0	-23,4
Safety temperature	°C	3	1	-1	-4	-6	-10	-14	-19
Cooling Capacity Factor	Nr	0,995	0,990	0,985	0,981	0,977	0,974	0,971	0,968
Compressor power input Factor	Nr	0,997	0,993	0,990	0,988	0,986	0,984	0,982	0,981
Internal exchanger glycol solution flow factor	Nr	1,003	1,010	1,020	1,033	1,050	1,072	1,095	1,124
Pressure drop Factor	Nr	1,029	1,060	1,090	1,118	1,149	1,182	1,211	1,243

The correction factors shown refer to water and glycol ethylene mixes used to prevent the formation of frost on the exchangers in the water circuit during inactivity in winter.

Fouling Correction Factors

Internal exchanger (evaporator)

m2 °C / W	F1	FK1
0.44 x 10 (-4)	1,0	1,0
0.88 x 10 (-4)	0,97	0,99
1.76 x 10 (-4)	0,94	0,98

F1 = Cooling capacity correction factors

FK1 = Compressor power input correction factor

Overload and control device calibrations

		open	closed	Value
High pressure switch (gas side)	[kPa]	4050	3300	-
Low pressure alarm (gas side)	[kPa]	450	600	-
Antifreeze protection	[°C]	4,0	6,0	-
High pressure safety valve (gas side)	[kPa]	-	-	4500
Low pressure safety valve (gas side)	[kPa]	-	-	3000
Max no. of compressor starts per hour (gas side)	[n°]	-	-	10
Differential pressure switch (water side)	[kPa]	3	5	-
Max. pressure without hydronic assembly (water side)	[kPa]	-	-	1000
Max. pressure with hydronic assembly (water side)	[kPa]	-	-	600
Safety valve calibration (water side) (1)	[kPa]	-	-	600

⁽¹⁾ Available only with hydronic assembly option

Integrated heating capacities

Air temperature external exchanger inlet °C (B.S. / B.U)	-10 / -10,5	-5 / -5,4	0 / 0,6	5 / 3,9	OTHERS
Heating capacity multiplication coefficient	0,90	0,89	0,88	0,91	1

To obtain the integrated heating capacities (the real heating capacity considering the defrost cycles too), multiply the kWt value in the heating performance tables by the following coefficient.

Performances

Heating - Size 50.4 - 90.4

Leaving internal exchanger water temperature (°C)

Size			25	3	:5		10		5	55		
	W.B.	kWt	kWe	kWt	kWe	kWt	kWe	kWt	kWe	kWt	kWe	
	-15 / -15.4	90,0	26,1	89,0	32,7	88,8	36,8	-	-	-	-	
	-10 / -10.5	104	26,5	102	33,0	102	37,0	_	-	-	-	
	-7 / -8	111	26,7	110	33,2	109	37,1	108	41,6	-	-	
50.4	0 / -0.6	137	27,2	134	33,7	133	37,5	131	41,9	-	-	
	7/6	163	27,5	160	34,3	157	38,0	154	42,3	146	53,2	
	15 / 13	197	27,6	192	34,8	190	38,7	185	42,9	173	53,6	
	-15 / -15.4	95,7	28,7	94,9	35,6	96,2	40,2	-	-	-	-	
	-10 / -10.5	110	29,2	109	36,0	110	40,3	-		-	-	
	-7 / -8	117	29,5	118	36,2	118	40,5	117	45,3	-	-	
55.4	0 / -0.6	144	30,2	144	36,9	143	41,1	142	45,8	-	-	
	7/6	172	30,6	171	37,8	169	41,9	166	46,5	157	58,0	
	15 / 13	207	30,7	206	38,6	203	42,8	200	47,4	186	58,7	
	-15 / -15.4	104	31,3	105	38,6	105	43,5	-	-	-	-	
	-10 / -10.5	120	32,0	120	39,1	121	42,8	-	-	-	-	
60.4	-7 / -8	128	32,4	128	39,4	129	43,9	128	49,1	-	-	
60.4	0 / -0.6	157	33,3	157	40,5	156	44,8	154	49,7	-	-	
	7/6	188	33,8	186	41,5	185	45,9	181	50,7	171	63,1	
	15 / 13	228	33,7	225	42,5	223	47,2	218	52,0	203	64,2	
	-15 / -15.4	110	33,3	110	39,8	111	46,5					
	-10 / -10.5	126	33,9	126	41,7	127	46,7					
65.4	-7 / -8	135	34,2	135	42,0	135	46,9	135	52,8			
00.1	0 / -0.6	166	35,1	165	42,9	165	47,7	163	53,4			
	7/6	198	35,6	196	44,0	195	48,7	193	54,3	180	67,0	
	15 / 13	240	35,8	238	45,0	235	49,9	230	55,5	214	68,0	
	-15 / -15.4	121	35,1	120	44,7	120	49,7	-	-	-	-	
	-10 / -10.5	139	35,7	138	45,2	138	50,1	-	-	-	-	
70.4	-7 / -8	149	36,0	147	45,5	147	50,2	146	56,1	-	-	
	0 / -0.6	185	37,0	181	46,3	179	51,1	177	56,8	-	-	
	7/6	220	37,6	215	47,5	213	52,1	209	57,8	199	72,5	
	15 / 13	268	38,2	261	48,7	257	53,4	253	58,2	236	73,6	
	-15 / -15.4	140	41,4	140	51,3	139	57,2					
	-10 / -10.5	160	42,2	160	51,9	160	57,7					
80.4	7 / -8	171	42,6	171	52,3	170	58,0	168	64,6			
	0 / -0.6	209	43,7	208	53,5	206	59,1	203	65,5			
	7/6	251	44,5	248	54,6	244	60,2	238	66,6	226	82,6	
	15 / 13	304	45,3	297	55,8	292	61,6	284	67,9	269	83,9	
	-15 / -15.4	158	48,2	161	60,8	162	68,3	-	-	-	-	
	-10 / -10.5	182	48,9	182	61,1	183	68,3	-	-	-	-	
90.4	-7 / -8	194	49,3	194	61,2	194	68,2	194	76,1	-	-	
	0 / -0.6	237	50,6	236	62,3	234	68,9	233	76,5	-	-	
	7/6	284	51,8	281	63,5	276	69,9	273	77,4	261	97,0	
	15 / 13	347	53,1	335	65,0	333	71,6	325	79,0	309	98,5	

kWt = Internal exchanger heating capacity (kW) kWe = Compressor power input (kW) Tae [°C] = Entering external exchanger air temperature Performances in function of the entering/leaving water temperature differential = 5° C

Heating - Size 100.4 - 120.4

Leaving internal exchanger water temperature (°C)

Size	Tae (°C) D.B./ W.B.	25		35		40		45		55	
	W.D.	kWt	kWe	kWt	kWe	kWt	kWe	kWt	kWe	kWt	kWe
	-15 / -15.4	179	53,1	180	66,1	182	74,2	-	-	-	-
	-10 / -10.5	206	53,8	206	66,5	207	74,4	-	-	-	-
400.4	-7 / -8	221	54,2	221	66,8	220	74,6	221	83,5	-	-
100.4	0 / -0.6	272	55,6	269	68,0	267	75,4	264	84,2	-	-
	7/6	327	57,2	321	69,4	317	76,9	312	85,7	299	108
	15 / 13	398	59,4	390	71,5	380	78,9	373	87,9	353	110
	-15 / -15.4	195	58,0	197	72,1	199	80,6	-	-	-	-
	-10 / -10.5	224	59,1	225	73,3	226	81,3	-	-	-	-
440.4	-7 / -8	239	59,7	240	73,4	241	81,8	239	90,5	-	-
110.4	0 / -0.6	295	61,7	292	75,3	291	83,1	286	91,8	-	-
	7/6	353	63,6	347	77,0	344	84,9	338	93,5	320	116
	15 / 13	429	66,1	416	79,3	410	87,3	403	95,6	377	118
	-15 / -15.4	220	65,5	223	82,4	223	92,5	-	-	-	-
	-10 / -10.5	248	66,6	252	82,9	253	92,8	-	-	-	-
120.4	-7 / -8	263	67,2	267	83,2	268	92,7	268	103	-	-
120.4	0 / -0.6	323	69,3	325	85,1	323	93,8	320	104	-	-
	7/6	388	71,7	385	87,0	381	95,7	374	106	359	132
	15 / 13	471	74,6	465	89,8	456	98,3	444	108	421	134

kWt = Internal exchanger heating capacity (kW) kWe = Compressor power input (kW) Tae [°C] = Entering external exchanger air temperature Performances in function of the entering/leaving water temperature differential = 5°C

Performances

Cooling - Size 50.4 - 100.4

Entering external exchanger air temperature (C°)

Size	To (°C)	20		25 30			35			10	4	45	
		kWf	kWe	kWf	kWe	kWf	kWe	kWf	kWe	kWf	kWe	kWf	kWe
	5	157	31,8	150	35,2	142	38,9	132	42,6	119	47,7	109	53,5
50.4	7	166	32,3	158	35,9	150	39,5	139	43,3	126	48,3	116	54,2
	10	181	33,1	172	36,6	163	40,3	151	44,4	137	49,5	128	55,1
50.4	12	191	33,7	183	37,3	172	41,1	159	45,1	145	49,9	-	-
	15	208	34,7	198	38,4	186	42,4	172	46,6	158	51,4	-	-
	18	223	35,8	213	39,5	200	43,5	185	47,6	170	52,7	-	-
	5	167	36,0	160	39,7	152	43,5	142	47,4	128	52,9	117	59,4
	7	176	36,7	169	40,6	160	44,4	149	48,2	135	53,9	125	60,1
55.4	10	191	37,7	183	41,7	173	45,5	161	49,6	146	55,3	136	61,8
55.4	12	202	38,4	193	42,5	182	46,4	170	50,4	155	55,9	-	-
	15	218	39,7	209	43,8	196	48,0	183	52,2	168	57,7		
	18	234	41,1	225	45,2	211	49,3	197	53,6	183	59,5		
	5	182	39,5	175	43,4	164	47,6	152	52,2	139	57,3	127	64,7
	7	192	40,1	184	44,3	173	48,4	160	52,8	147	58,2	136	65,4
60.4	10	209	41,4	200	45,7	187	49,8	173	54,8	159	60,0	150	67,1
00.4	12	220	42,1	211	46,6	197	50,9	183	55,3	167	61,0	-	-
	15	238	43,5	227	48,1	212	52,6	196	57,2	181	63,4	-	-
	18	257	44,6	244	49,2	228	53,8	211	59,2	197	65,3	-	-
	5	195	43,1	186	47,5	175	52,1	162	57,1	147	63,1	138	71,2
	7	206	44,0	197	48,3	185	53,0	170	58,2	155	64,5	148	72,4
65.4	10	224	45,4	214	49,9	200	54,8	184	59,9	169	66,4	162	74,9
05.4	12	236	46,7	225	51,0	210	55,9	193	61,3	178	68,2		
	15	255	48,3	243	52,7	226	57,8	209	63,3	195	70,5		
	18	275	49,7	260	54,4	242	59,7	224	65,6	216	73,4	_	
	5	208	45,2	200	49,4	189	54,3	176	59,5	159	66,4	148	74,5
	7	219	46,1	210	50,3	198	55,5	184	60,4	167	67,0	156	75,9
70.4	10	232	47,4	225	51,7	211	56,9	197	61,7	180	68,8	164	77,7
70.4	12	249	48,4	239	52,9	225	58,2	209	63,5	191	70,9	-	-
	15	271	50,5	260	55,0	244	60,2	226	65,8	209	73,3	-	-
	18	290	51,9	277	56,5	262	61,7	243	67,3	226	75,0	-	-
	5	235	52,0	226	57,4	215	62,6	199	68,7	182	75,9	168	83,7
	7	249	53,3	239	58,4	226	63,4	209	69,4	190	76,9	177	85,3
80.4	10	267	54,5	257	59,7	242	65,4	225	71,2	206	78,4	194	86,6
	12	282	56,2	272	61,0	255	66,6	238	72,3	218	80,2		
	15	308	57,8	293	62,9	277	68,7	258	74,7	237	82,9		
	18	328	59,5	316	64,9	294	70,9	273	77,2	256	84,8	-	-
	5	270	64,3	259	70,0	241	76,8	223	84,1	205	93,0	188	103
	7	287	65,8	272	71,9	255	77,9	236	85,2	216	94,4	203	106
90.4	10	305	68,0	291	73,9	271	80,8	250	88,0	233	97,1	218	110
	12	321	69,5	305	75,6	286	82,0	265	89,7	247	98,7	-	-
	15	349	71,9	331	78,2	309	84,9	287	93,4	273	104	-	-
	18	373	75,2	352	80,9	330	87,8	308	96,0	287	111	-	-
	5	311	65,6	297	71,6	281	78,1	263	85,5	239	95,2	218	107
	7	325	66,8	310	73,0	292	80,0	275	86,7	248	96,5	229	108
100.4	10	344	67,9	326	74,6	310	80,6	290	88,4	265	97,9	246	110
	12	364	70,0	349	76,3	331	82,7	309	90,8	281	102		
	15	399	72,1	380	78,7	359	85,6	333	93,5	307	104		
	18	423	75,2	404	81,4	380	87,8	352	96,6	328	106	-	-

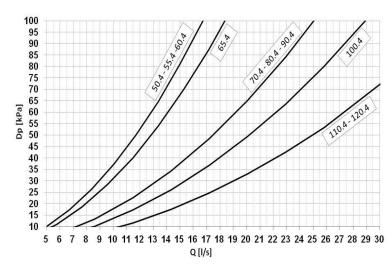
kWf = Internal exchanger cooling capacity (kW)

kWe = Compressor power input (kW)
To (°C) = Leaving internal exchanger water temperature (°C)
Performances in function of the entering/leaving water temperature differential = 5°C

Cooling - Size 110.4 - 120.4

Entering external exchanger air temperature (C°)

Size	To (°C)	2	20 25		30		35		40		45		
		kWf	kWe	kWf	kWe	kWf	kWe	kWf	kWe	kWf	kWe	kWf	kWe
	5	342	74,8	328	81,0	309	88,3	287	96,7	261	108	242	120
110.4	7	357	75,6	340	82,6	321	89,8	297	98,3	272	109	253	121
	10	376	77,0	361	83,6	338	91,8	315	99,8	289	111	272	123
	12	400	79,5	383	85,8	358	93,9	334	102	307	114	-	-
	15	437	82,1	415	89,2	388	97,1	362	105	336	116	-	-
	18	464	85,1	441	91,8	415	99,4	381	109	359	121	-	-
	5	375	86,2	357	94,6	338	102	313	112	286	125	271	141
	7	389	88,0	373	95,2	350	104	324	114	295	128	278	141
420.4	10	411	89,6	390	97,5	368	106	343	116	315	128	298	143
120.4	12	435	92,2	414	99,9	386	110	362	119	335	132	-	-
	15	470	96,4	450	104	419	114	391	124	369	137	-	-
	18	502	99,1	475	108	447	117	417	127	395	142	-	-


 $kWf = Internal\ exchanger\ cooling\ capacity\ (kW)$ $kWe = Compressor\ power\ input\ (kW)$ $To\ (^{\circ}C) = Leaving\ internal\ exchanger\ water\ temperature\ (^{\circ}C)$ $Performances\ in\ function\ of\ the\ entering/leaving\ water\ temperature\ differential\ =\ 5^{\circ}C$

Configurations

Hydronic assembly - Standard unit

Configuration without hydronic assembly, equipped with components as described on the water diagram key. All water fittings are Victaulic type. It is possible to control an external pump by an on/off or 0-10V signal.

Internal exchanger pressure drop curves

The pressure drops on the water side are calculated by considering an average water temperature at $7^{\circ}\text{C}.$

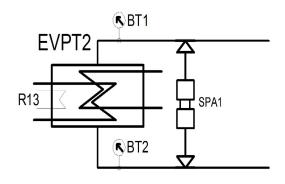
Q = Water flow rate[I/s] DP = Pressure drops [kPa]

The water flow rate must be calculated with the following formula

 $Q[I/s] = kWf / (4,186 \times DT)$

kWf = Cooling capacity in kW

DT = Temperature difference between entering / leaving water


To the internal exchanger pressure drops must be added the pressure drops of the steel mesh mechanical filter that must be placed on the water input line. It is a device compulsory for the correct unit operation, and it is available as Clivet option (IFWX).

Admissible water flow rates

Min. (Qmin) and max. (Qmax) water flow-rates admissibles for the correct unit operation.

S	IZE	50.4	55.4	60.4	65.4	70.4	80.4	90.4	100.4	110.4	120.4	
Qmin	[l/s]	5,0	5,0	5,0	5,5	7,4	7,4	7,4	8,6	10,7	10,7	
Qmax	[l/s]	16,7	16,7	16,7	18,4	25,1	25,1	25,1	29,0	35,8	35,8	

Water diagram

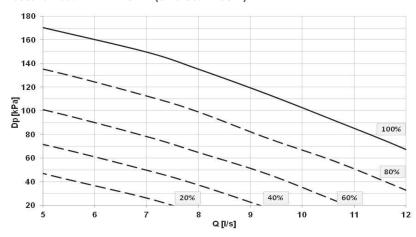
EVPT2 = Plate evaporator 2 circuits

R13 = Evaporator group heater

BT1 = Probes of entering water temperature

BT2 = Probes of leaving water temperature

SPA1 = Differential pressure switch water

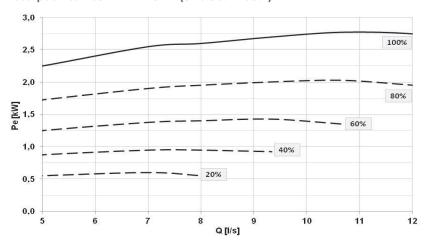

Hydronic assembly - Unit with VARYFLOW + (VARYP)

Configuration with 2 centrifugal electric pumps arranged in parallel and controlled by inverter, with housing and impeller made with AISI 304 stainless steel, and components as described on the water diagram key. All water fittings are Victaulic type.

The electric pumps are equipped with three-phase electric motor with IP55-protection and complete with thermoformed insulated casing. The control, modulates the water flow-rate keeping constant the delta T.

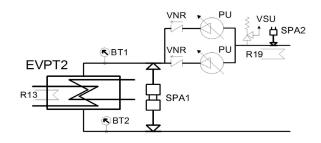
If the water temperature is in critical conditions, it allows to extend the unit operating ranges guaranteeing its operating, automatically reducing the water flow-rate. In the event of one of the two pumps is temporarily unavailable, it guarantees about the 80% of the nominal flow-rate.

Pressure head VARYFLOW+ (Size 50.4 - 65.4)



Q = Water flow rate [I/s] DP = Pressure head [kPa]

Caution: to obtain the available pressure values, you need to subtract the following from the head values represented in these diagrams:
User side exchanger pressure drops


• IFVX accessory –Steel mesh filter on the water side (where applicable)

Absorption curves VARYFLOW+ (Size 50.4 - 65.4)

Q = Water flow rate[I/s] Pe = Electric power consumption [kW]

Schema idraulico

EVPT2 = Plate evaporator 2 circuits

R13 = Evaporator group heater

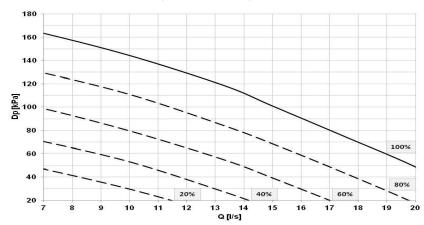
BT1 = Probes of entering water temperature

BT2 = Probes of leaving water temperature

VNR = Non return valves

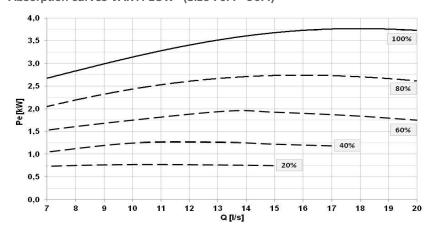
SPA1 = Differential pressure switch water

PU = Hydronic assembly VARYFLOW +

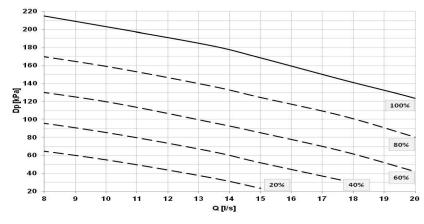

VSU = Water safety valve

R19 = Hydronic assembly heaters

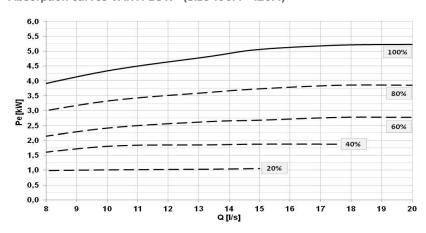
SPA2 = Installation load pressure switch


Configurations

Pressure head VARYFLOW+ (Size 70.4 - 90.4)


Q = Water flow rate [I/s] DP = Pressure head [kPa]

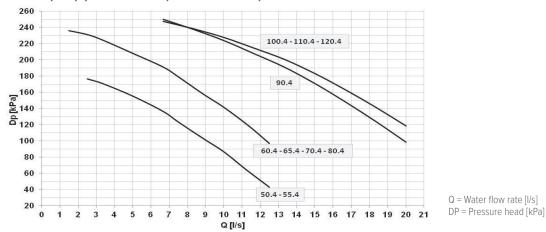
Absorption curves VARYFLOW+ (Size 70.4 - 90.4)


Q = Water flow rate[I/s] Pe = Electric power consumption [kW]

Pressure head VARYFLOW+ (Size 100.4 - 120.4)

Q = Water flow rate [l/s] DP = Pressure head [kPa]

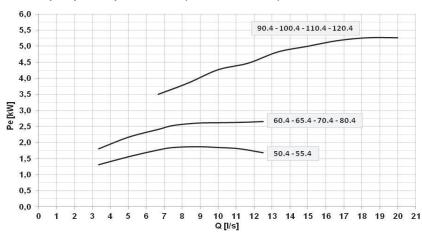
Absorption curves VARYFLOW+ (Size 100.4 - 120.4)


Q = Water flow rate[l/s] Pe = Electric power consumption [kW]

Hydronic assembly - Unit with one ON/OFF pump (HYG1)

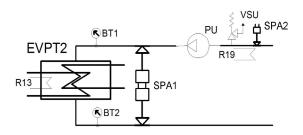
Configuration with 1 centrifugal electric pump, with housing and impeller made with AISI 304 stainless steel, and components as described on the water diagram key. All water fittings are Victaulic type.

The electric pump is equipped with three-phase electric motor with IP55-protection and complete with thermoformed insulated casing.


ON/OFF pump pressure head (Size 50.4 - 120.4)

🛕 Caution: to obtain the available pressure values, you need to subtract the following from the head values represented in these diagrams:

- · User side exchanger pressure drops
- IFVX accessory —Steel mesh filter on the water side (where applicable)


ON/OFF pump absorption curves (Size 50.4 - 120.4)

Q = Water flow rate[I/s]

Pe = Electric power consumption [kW]

Water diagram

EVPT2 = Plate evaporator 2 circuits

R13 = Evaporator group heater

BT1 = Probes of entering water temperature

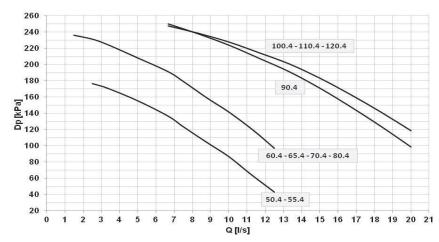
BT2 = Probes of leaving water temperature

SPA1 = Differential pressure switch water

PU = Hydronic assembly 1 ON/OFF pump

VSU = Water safety valve

R19 = Hydronic assembly heaters

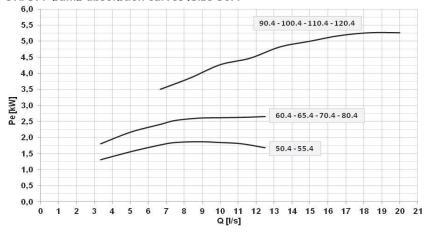

SPA2 = Installation load pressure switch

Configurations

Hydronic assembly - Unit with two ON/OFF pumps ON/OFF (HYG2)

Configuration with 2 centrifugal electric pumps, 1 stand-by, with housing and impeller made with AISI 304 stainless steel, and components as described on the water diagram key. All water fittings are Victaulic type. The electric pumps are equipped with three-phase electric motor with IP55-protection and complete with thermoformed insulated casing.

The control balances the operating hours and in case of failure it is signaled and the stand-by pump is automatically activated.

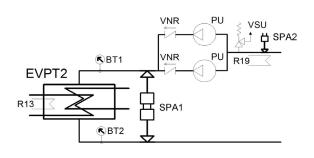


ON/OFF pump pressure head (Size 50.4 - 120.4)

Q = Water flow rate [I/s] DP = Pressure head [kPa]

- 🛕 Caution: to obtain the available pressure values, you need to subtract the following from the head values represented in these diagrams:
- · User side exchanger pressure drops
- IFVX accessory —Steel mesh filter on the water side (where applicable)

ON/OFF pump absorption curves (Size 50.4 -



120.4)

Q = Water flow rate[I/s]

Pe = Electric power consumption [kW]

Water diagram

EVPT2 = Plate evaporator 2 circuits

R13 = Evaporator group heater

BT1 = Probes of entering water temperature

BT2 = Probes of leaving water temperature

SPA1 = Differential pressure switch water

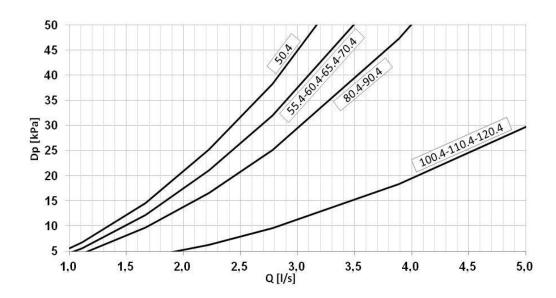
PU = Hydronic assembly 2 ON/OFF pumps

VSU = Water safety valve

R19 = Hydronic assembly heaters

SPA2 = Installation load pressure switch

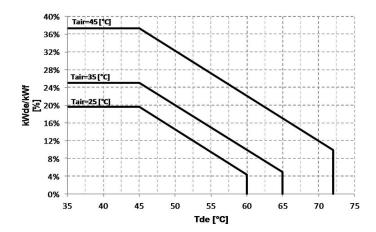
D - Partial energy recovery


Configuration with recovery side brazed stainless steel (316 AISI) plate exchangers, and components per the legend of the enclosed plumbing circuit diagram. All water fittings are Victaulic type.

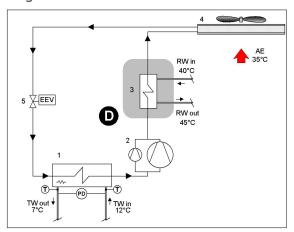
A configuration which enables the production of hot water free-of-charge while operating in the cooling mode, thanks to the partial recovery of condensation heat that would otherwise be rejected to the external heat source. It is possible to recovery about 20% of the unit rejected heating capacity equal to the sum of the cooling capacity and the compressor power input.

The partial recovery device is considered to be operating when it is powered by the water flow which is to be heated. This condition improves the unit performance, since it reduces the condensation temperature: in nominal conditions the cooling capacity increases indicatively by 3.2% and the power input of the compressors is reduced by 3.6%.

Hot water availability is always subordinate to the production of chilled water. The heating capacity request is made by the digital contact enabling, that activates the pump recovery side (outside the unit).


Partial energy recovery pressure drop curves

The pressure drops on the water side are calculated by considering an average water temperature at 7°C.


Q = Water flow rate [I/s] DP = Pressure head [kPa]

Partial recovery heating capacity

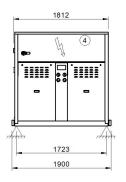
kWde/kWf = Heat recovered/Cooling capacity [%]
Tde = Heat recovering device outlet water temperature [°C]

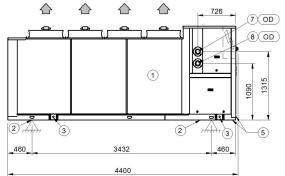
Diagram

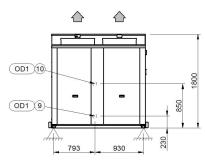
D - Partial recovery device

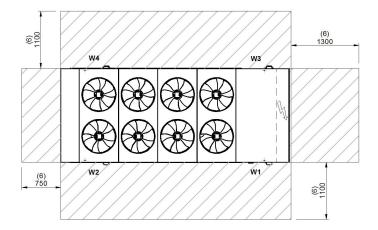
- 1 Internal exchanger
- 2 Compressors
- 3 Recovery exchanger
- 4 External exchanger
- 5 Electronic expansion valve

TW out chilled water outlet TW out Uscita acqua refrigerata


RW in - Ingresso acqua recupero RW out - Uscita acqua recupero


T - Sonda di temperatura PD - Pressostato differenziale AE Aria esterna


Dimensional drawings


Size 50.4 - 55.4 - 60.4 - 65.4

DAAL 150.4_65.4 EXC_0 REV02 Data/Date 23/07/2015

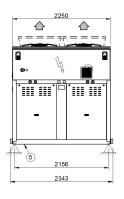
- 1. External exchanger
- 2. Unit fixing holes Ø 25
- 3. Lifting brackets (Removable)
- 4. Electrical panel
- 5. Power input
- 6. Clearance access recommended
- 7. Water inlet user side of no pumps unit / Water outlet user side of unit with pumps (optional)
- 8. Water inlet user side of unit with pumps (optional) / Water outlet user side of no pumps unit
- 9. Water inlet recovery side (Optional)
- 10. Water outlet recovery side (Optiona

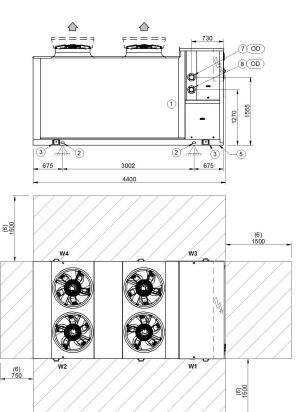
SIZE		50.4	55.4	60.4	65.4
Length	mm	4400	4400	4400	4400
Height	mm	1800	1800	1800	1800
Depth	mm	1812	1812	1812	1812
W1 supporting point	kg	483	484	505	550
W2 supporting point	kg	308	307	327	344
W3 supporting point	kg	487	495	510	572
W4 supporting point	kg	313	317	331	366
Operating weight	kg	1590	1604	1673	1831
Shipping weight	kg	1550	1565	1635	1790

The presence of optional accessories may result in a substantial variation of the weights shown in the table.

Dimensional drawings

 \triangle


OD1 (10) OD1 (9)

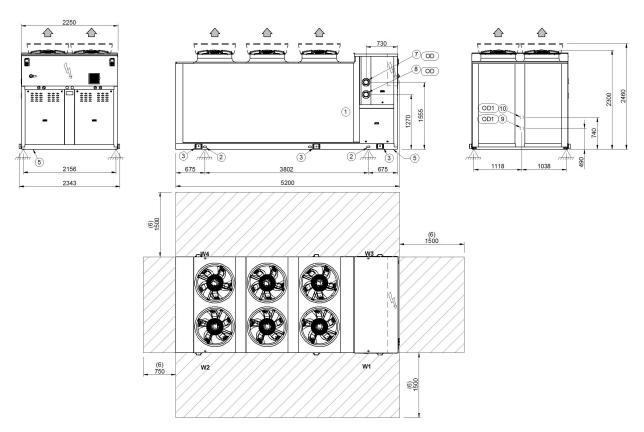

F = = = 7F = = =

Size 70.4 - 80.4 - 90.4

DAAL 170.4_90.4 EXC_0 REV01 Data/Date 22/07/2015

490

- . External exchanger
- 2. Unit fixing holes Ø 25
- 3. Lifting brackets (Removable)
- 4. Electrical panel
- 5. Power input
- 6. Clearance access recommended
- 7. Water inlet user side of no pumps unit / Water outlet user side of unit with pumps (optional)
- B. Water outlet user side of no pumps unit / Water inlet user side of unit with pumps (optional)
- 9. Water inlet recovery side (Optional)
- 10. Water outlet recovery side (Optional)


SIZE		70.4	80.4	90.4
Length	mm	4400	4400	4400
Height standard unit	mm	2300	2300	2300
Height with AXITOP	mm	2460	2460	2460
Depth	mm	2250	2250	2250
W1 supporting point	kg	740	774	817
W2 supporting point	kg	440	463	485
W3 supporting point	kg	770	807	856
W4 supporting point	kg	469	496	523
Operating weight	kg	2420	2540	2681
Shipping weight	kg	2375	2495	2630

The presence of optional accessories may result in a substantial variation of the weights shown in the table.

Dimensional drawings

Size 100.4 - 110.4 - 120.4

DAAL 1100.4_120.4 EXC_0 REV01 Data/Date 22/07/2015

- External exchanger
- Unit fixing holes Ø 25
- 3. Lifting brackets (Removable)
- Electrical panel
- Power input
- Clearance access recommended
- Water inlet user side of no pumps unit / Water outlet user side of unit with pumps (optional) Water outlet user side of no pumps unit / Water inlet user side of unit with pumps (optional)
- Water inlet recovery side (Optional)
- 10. Water outlet recovery side (Optional)

SIZE		100.4	110.4	120.4
Length	mm	5200	5200	5200
Height standard unit	mm	2300	2300	2300
Height with AXITOP	mm	2460	2460	2460
Depth	mm	2250	2250	2250
W1 supporting point	kg	960	991	1033
W2 supporting point	kg	568	577	608
W3 supporting point	kg	989	1020	1061
W4 supporting point	kg	597	606	636
Operating weight	kg	3114	3194	3338
Shipping weight	kg	3050	3120	3262

The presence of optional accessories may result in a substantial variation of the weights shown in the table.

Pagina intenzionalmente bianca

FOR OVER 30 YEARS WE HAVE BEEN OFFERING SOLUTIONS TO ENSURE SUSTAINABLE COMFORT AND THE WELLBEING OF PEOPLE AND THE ENVIRONMENT

www.clivet.com

MideaGroup
humanizing technology

CLIVET S.p.A.

Via Camp Lonc 25, Z.I. Villapaiera 32032 Feltre (BL) - Italy Tel. +39 0439 3131 - info@clivet.it

CLIVET GMBH

Hummelsbütteler Steindamm 84, 22851 Norderstedt, Germany Tel. +49 40 325957-0 - info.de@clivet.com

Clivet Group UK LTD

Units F5 & F6 Railway Triangle, Portsmouth, Hampshire PO6 1TG Tel. +44 02392 381235 -Enquiries@Clivetgroup.co.uk

CLIVET LLC

Office 508-511, Elektozavodskaya st. 24, Moscow, Russian Federation, 107023 Tel. +7495 6462009 - info.ru@clivet.com

CLIVET MIDEAST FZCO

Dubai Silicon Oasis (DSO) Headquarter Building,Office EG-05, P.O Box-342009, Dubai, UAE Tel. +971 (0) 4501 5840- info@clivet.ae

Clivet South East Europe

Jaruščica 9b 10000, Zagreb, Croatia Tel. +385916065691 - info.see@clivet.com

Clivet Airconditioning Systems Pvt Ltd Office No.501 & 502,5th Floor, Commercial –I,

Kohinoor City, Old Premier Compound, Off LBS Marg, Kirol Road, Kurla West, Mumbai Maharashtra 400070, India Tel. +91 22 30930200 - sales.india@clivet.com